MAGNETOHYDROSTATIC EQUILIBRIUM. II. THREE-DIMENSIONAL MULTIPLE OPEN MAGNETIC FLUX TUBES IN THE STRATIFIED SOLAR ATMOSPHERE

F. A. GENT1, V. FEDUN2, R. ERDÉLYI3

1SP²RC, School of Mathematics and Statistics, University of Sheffield, S3 7RH, UK and
2Space Systems Laboratory, Department of Automatic Control and Systems Engineering, University of Sheffield, S1 3JD, UK

Draft version May 4, 2014

ABSTRACT

A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modelled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. (MNRAS, 435, 689, 2013). Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium.

Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modelling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

Subject headings: Sun:atmosphere — Sun: transition region — Sun: chromosphere — instabilities — magnetic fields — magnetohydrodynamics (MHD)

1. INTRODUCTION

At a radius $R_0 \simeq 696$ Mm from the Sun’s core its luminous surface, the photosphere, has a typical temperature of about 6500 K. Based on estimates from semi-empirical 1D models at $h \simeq 0.35 - 0.65$ Mm above this surface the temperature falls to a minimum $T \simeq 4200$ K. The temperature then rises with height and experiences rapid jumps to 10^5 K just above $h \simeq 2$ Mm and to 10^6 K beyond $h \simeq 2.5$ Mm (Vernazza et al. 1981; Priest 1987; Aschwanden 2005; Erdélyi 2008, and references therein). The mechanism of heating the solar corona is not well understood. The solar atmosphere is highly active. Jets, flares, prominences, spicules and flux emergence, among others, carry mass and energy from the surface into the atmosphere. Although frequent and powerful, these solar accumulated events do not yet appear to be of sufficient energy to explain the consistently high temperatures for the corona (Zirker 1993; Aschwanden 2005; Klimchuk 2006). An alternative view may be that solar magnetic field lines, in the form of magnetic flux tubes, act as guides for magnetohydrodynamic (MHD) waves that may carry the missing energy to heat the corona to observed temperatures (Jess et al. 2007; Morton et al. 2012; Wedemeyer-Böhm et al. 2012).

Coronal loops, comprising strongly magnetized flux tubes, permeate the atmosphere. Given the very low thermal pressure in the solar corona the magnetic pressure can become dynamically dominant. From the photosphere to the lower corona there is a drop of six orders of magnitude in the plasma pressure and nine orders of magnitude in the plasma density (Vernazza et al. 1981). Just above 2 Mm from the photosphere there is a transition zone, called the Transition Region (TR), where there is a jump in plasma density and temperature.

f.gent@shef.ac.uk

two orders of magnitude, evident in the black lines of Fig. 1 (see also Fig. 1 of Gent et al. 2013, hereafter referred to as Paper I).

Typical footpoint strengths of 100 mT (1000 G) are observed for magnetic flux tubes emerging from the photosphere (Zwaan 1978; Priest 1987; Aschwanden 2005; Erdélyi 2008, and references therein, the latter Ch.8.7, Ch.5, respectively). An isolated magnetic flux tube must, therefore, expand exponentially in radius as it approaches the TR to balance the plasma pressure. Environments with such large dynamical scales are highly challenging to model (DeForest 2007).

Although on some solar time-scales they may be regarded as transient features, magnetic flux loops persist in relative pressure equilibrium with the ambient atmosphere for many minutes, days or longer (McGuire et al. 1977; Levine & Withbroe 1977; Malherbe et al. 1983). Let us consider the magnetic field as a wave guide for carrying energy from the lower solar atmosphere and releasing it as heat high in the corona. We can take advantage of the steady background state of the magnetic field and plasma to investigate such transport mechanisms with a series of numerical simulations (Shelyag et al. 2008; Fedun et al. 2009; Shelyag et al. 2009; Fedun et al. 2011a; Vigeeh et al. 2012; Khomenko & Collados 2012; Mumford et al. 2014).

Magnetic flux tubes appear to exhibit over-dense cores in the corona, in apparent contradiction with hydrostatic equilibrium (Aschwanden et al. 2001; Winebarger et al. 2003). Modelling a single flux tube in pressure equilibrium for the corona dictates that the internal magnetic pressure arising from a predominantly parallel field will reduce the plasma pressure and, consequently, also plasma density or temperature. Combining multiple flux tubes may induce magnetic tension forces restoring and potentially even enhancing plasma density within the
flux tubes. Fig. 1(a) displays the axial profile for the plasma pressure, temperature and density with the same parameters for the magnetic flux tube as applied in Paper I, but with some revisions as outlined in Section 2. Significantly, in the corona, the plasma density inside the flux tube is lower than the ambient plasma. Note, a more gradual expansion of the flux tube is applied (panel b, below 1 Mm, blue, dashed line). The resulting plasma density, and to some extent the pressure, is enhanced in the chromosphere and TR, where there are strong tension forces applying, but not in the corona where the field lines are predominantly parallel.

![Graph](image)

Fig. 1.— 1D-slices along the axis of a single magnetic flux tube for thermal p [Pa] (solid, green) and magnetic $B^2/(2\mu_0)$ [Pa] (dashed, blue) pressure, temperature T [K] (dotted, red) and plasma density ρ [$\mu g\, m^{-3}$] (dashed-dotted, purple). Panel (a) has parameters matching Paper I, while (b) applies a reduced expansion rate for the flux tube in the chromosphere. Interpolated 1D fits to the vertical atmospheric profile are shown in black lines (Vernazza et al. 1981; McWhirter et al. 1975, former up to 2.3 Mm; latter above 2.4 Mm). Differences between model and reference profiles vanish away from the flux tube axis.

Numerical models with a single flux tube may miss some of the interesting non-linear effects arising from interactions between neighboring flux tubes. Khomenko et al. (2008); Khomenko & Collados (2012) have constructed a 2D magnetic field with multiple flux tubes for a domain which does not include the transition region and where each flux tube is identical to its neighbour. Hasan et al. (2005); Hasan & van Ballegooijen (2008) have constructed a 2D magnetic field, matching observational models (e.g. López Fuentes et al. 2008; Kontar et al. 2008; Verth et al. 2011; Jefrey & Kontar 2013). We derive analytic expressions for adjustments to the plasma pressure and density, due to the magnetic field, to restore pressure balance, also constrained by observational parameters. We identify empirically the minimal balancing forces applying to the MHD equations of momentum and energy conservation that preserve this equilibrium.

The paper is organised as follows. Section 2.1 clarifies what changes have been introduced in comparison to the single magnetic flux tube model detailed in Gent et al. (2013). Section 2.2 describes how the MHD equations governing the perturbed system must be framed to account for the steady background utilizing multiple flux tubes of the form defined in Section 2.3. Section 2.4 outlines how the atmosphere is adjusted to balance the magnetic pressure and tension forces and identifies the balancing forces which must also be applied. In Section 2.5 the changes to the MHD equations are identified. Section 2.6 has examples of heterogeneous multiple flux tube fields that are possible with this method. A summary of the results are presented in Section 3 with some points for discussion. In Appendix A we show some of the analytic calculations in more detail. For pairs of interacting magnetic flux tubes Appendix A.1 demonstrates why a balancing force must be present in addition to any changes to the plasma pressure and density, and identifies these forces. Profiles for the plasma pressure and density are derived in Appendix A.2.

2. MULTIPLE OPEN MAGNETIC FLUX TUBES

2.1. Development beyond the single flux tube model

Following Gent et al. (2013) we apply a background atmosphere derived by a combination of modelling profiles from Vernazza et al. (1981, Table 12, VALIIC) and McWhirter et al. (1975, Table 3) for the chromosphere and lower solar corona, respectively, assuming background equilibrium parameters for the quiet Sun. The profiles interpolated as a function of height above the photosphere are included in Fig. 1 as black dotted lines (pressure), dashed (density) and dash-dotted (temperature). Up to the Transition Region, at around 2.2 Mm, the steep pressure and corresponding density gradients dictate that magnetic flux tubes expand rapidly in radius and reduce in flux density. In the solar corona the flux tube radius is almost steady with height. Our models, both for the single tube and the multiple configurations, capture the reference data profiles very effectively. However, the models do not depend on the choice of atmosphere and the derivation described could be applied to many alternative atmospheric models.

In constructing the magnetic field, we include a constituent to represent an ambient magnetic field, ubiquitous within the solar atmosphere. In Paper I the ambient field was a function of r and z. Here we apply a constant vertical ambient field, which still satisfies the divergence free condition and, as constructed, retains thermal pressure $p > 0$ as $z \to \infty$. The resulting derivatives, therefore, somewhat simplify.

For an axially symmetric flux tube it is convenient to work in polar coordinates. This is applied in Paper I and for the in-
With magneto-thermodynamic plasma and gravitational forces, the variables governing the perturbed MHD variables in a system of equations are:

\[
\begin{align*}
\rho &= \rho_0 + \tilde{\rho}, \quad e = e_0 + \tilde{e}, \quad B = B_0 + \tilde{B},
\end{align*}
\]

where \(\tilde{\rho}\) denotes the perturbed portion and it is assumed that \(\rho_0, e_0\) and \(B_0\) do not vary with time. The subscript \(b\) denotes background, and in combination with \(i\) or \(j\), later in the paper, indicates the background vector component. With magneto-hydrostatic equilibrium for the background state, such that \(u_b = 0\), in the presence of an external gravity field \(g\), from Eq. (2) we obtain

\[
\frac{\partial}{\partial x_i} \left(p_i + \frac{B_j B_j}{2\mu_0} \right) - \frac{\partial}{\partial x_j} \left(\frac{B_i B_j}{\mu_0} \right) = \rho_0 g_i,
\]

We then obtain the expression matching the right hand side of Eq. (3) by scalarly multiplying Eq. (7) by \(u\) to yield

\[
u_i \frac{\partial}{\partial x_i} \left(p_i + \frac{B_j B_j}{2\mu_0} \right) - u_i \frac{\partial}{\partial x_j} \left(\frac{B_i B_j}{\mu_0} \right) = \rho_0 g_i u_i.
\]

Subtracting Eqs. (7) and (8) from Eqs. (2) and (3) we derive

\[
\frac{\partial}{\partial t} \left(p_i + \tilde{\rho} \right)u_i + \frac{\partial}{\partial x_j} \left(\left(p_i + \tilde{\rho} \right)u_i \right) + \frac{\partial}{\partial x_j} \left(\left(p_i + \tilde{\rho} \right)u_i \right) = \rho_0 g_i u_i,
\]

\[
\frac{\partial}{\partial t} \left(\tilde{B}_i \right) + \frac{\partial}{\partial x_j} \left[u_i \left(B_j + \tilde{B}_j \right) - u_j \left(B_i + \tilde{B}_i \right) \right] = 0,
\]

\[
\tilde{p}_T = (\gamma - 1) \left[\tilde{e} \left(p_i + \tilde{\rho} \right) + \tilde{B}_i \tilde{B}_j \mu_0 \right] + \frac{\gamma - 2}{\gamma - 1} \left(\tilde{B}_i B_j \right) \mu_0
\]

Our approach is to prescribe the magnetic field to model a flux tube or a set of flux tubes with structure approximating the observed magnetic field in the lower solar atmosphere. We place this field in a hydrostatic stratified atmosphere derived from the observed vertical profiles of the reference data. We then adjust the plasma pressure and density distribution from the hydrostatic background as required to achieve magneto-hydrostatic equilibrium.
One approach to constructing the magnetic field is to apply a potential field to the prescribed atmosphere and allow the system to relax numerically (e.g. Solanki & Steiner 1990; Khomenko et al. 2008). Simulations of non-potential perturbations may then be applied to this equilibrium. For models utilizing very large data arrays there may be considerable numerical overheads before the simulations can proceed, though it may be possible to circumvent this problem by using damping methods. In Cartesian coordinates the components of the magnetic field along the \(m\)th flux tube is denoted \(m\mathbf{B}_t\), where \(m\) indicates the \(m\)th flux tube in a magnetic field comprising more than one flux tube. To distinguish the index label for each magnetic flux tube configuration from other indices in this article, we use only labels \(m,n \in \mathbb{N}\) and these appear as prefix superscripts. Summation convention does not apply to repetition of these indices. The model domain may reasonably be approximated in cylindrical polar coordinates, with radius measured from the axis of the flux tube, or in Cartesian coordinates, with \(r,\theta, z\) the local analogue of the longitudinal and latitudinal surface coordinates. The vertical coordinate \(z\) is aligned along the solar radius, with \(z = 0\) being at the base of the solar photosphere at \(R_\odot \approx 696\) Mm. We require an axially symmetric flux tube with axis located at \((n_x, n_y)\), expanding in radius with height \(z\) as the flux density reduces to balance the ambient plasma pressure.

In Cartesian coordinates the components of \(m\mathbf{B}_t\) are described by the self-similar relations

\[
\begin{align*}
\frac{\partial m\mathbf{B}_x}{\partial t} &= -mS \frac{\partial m\mathbf{f}}{\partial x} mG, \\
\frac{\partial m\mathbf{B}_y}{\partial t} &= -mS \frac{\partial m\mathbf{f}}{\partial y} mG, \\
\frac{\partial m\mathbf{B}_z}{\partial t} &= -mS \left(\frac{\partial m\mathbf{f}}{\partial x} \right)^2 + \left(\frac{\partial m\mathbf{f}}{\partial y} \right)^2 mG + b_{0z}.
\end{align*}
\]

(17)

The sign \(\pm 1\) is indicated by \(mS\) to determine the orientation of the magnetic field along the \(m\)th flux tube. Real \(b_{0z}\) is a constant, chosen to yield a weak ambient vertical field in which any flux tubes are situated.

\[
\begin{align*}
m\mathbf{f} &= m\mathbf{r}B_{0z}, \\
mG &= \frac{2\ell}{\sqrt{\pi f_0}} \exp \left(-\frac{m^2}{f_0} \right), \\
m\mathbf{r} &= \sqrt{(x-mx)^2 + (y-my)^2},
\end{align*}
\]

(18) (19) (20)

where \(m\mathbf{r}\) is the radial distance from the axis at \((m_x, m_y)\) and with \(mG\) determining the radial width of the flux tube by a Gaussian centred at \((m_x, m_y)\). In the normalisation coefficient an appropriate length scale \(\ell\) is included with the scaling factor \(f_0\), which are uniform for all flux tubes. The reduction in the vertical field strength along the flux tube axis is specified by

\[
B_{0z} = b_{01} \exp \left(-\frac{2}{z_1} \right) + b_{02} \exp \left(-\frac{2}{z_2} \right),
\]

(21)

with \(b_{01}\) and \(b_{02}\) assigning the typical axial field strength from the photosphere and from the lower corona respectively. \(z_1\) and \(z_2\) are scaling lengths. In principle, these constants could differ between each flux tube, yielding stronger non-uniformity in the total field. Keeping \(B_{0z}\) uniform sufficiently simplifies the equations for an analytic solution. The final result retains significant asymmetry.

Applying these to Eq. (17) we obtain the explicit form for the single magnetic flux tube as

\[
\begin{align*}
m\mathbf{B}_{ex} &= -mS(x-m_x)\mathbf{B}_{0z} mG \frac{\partial B_{0z}}{\partial z}, \\
m\mathbf{B}_{ey} &= -mS(y-m_y)\mathbf{B}_{0z} mG \frac{\partial B_{0z}}{\partial z}, \\
m\mathbf{B}_{ez} &= mS \mathbf{B}_{0z}^2 mG + b_{0z}.
\end{align*}
\]

(22)

Observations (Ch.3.5 in Mariska 1993; Schrijver & Title 2003) indicate the atmosphere outside the flux tubes includes a non-zero magnetic field in many parts of the chromosphere and, due to the local turbulence, is likely to be composed of very small scale structures. However, at the scales of interest the structure of this weak field is not likely to be dynamically significant. For simplicity in satisfying the divergence free condition a vertical magnetic field seems reasonable.

2.4. Plasma pressure and density

In magnetohydrostatic equilibrium a background atmosphere and magnetic field configuration must satisfy Eq.(7), which may also be expressed as:

\[
\nabla \rho_p + \nabla \left(\frac{B_0^2}{2\mu_0} \right) - (B_0 \cdot \nabla) \frac{B_0}{\mu_0} - \rho_0 g \hat{z} = \mathbf{0},
\]

(23)

where \(\hat{z}\) is the unit vector and only the global gravitational acceleration directed towards the solar origin is included. The magnetic tension is non-zero due to the curvature of the field lines and has opposite sign as it acts as a restoring force to the magnetic pressure. We know that the pressure is a scalar quantity, so by taking the curl of \(\nabla \rho\) we obtain

\[
\nabla \times \nabla \rho_p = 0 = \nabla \times \left(\rho_0 g \hat{z} + \frac{(B_0 \cdot \nabla) B_0}{\mu_0} - \nabla \left(\frac{B_0^2}{2\mu_0} \right) \right).
\]

(24)

For a single flux tube this condition is satisfied and a solution for \(\rho_p\) and \(\rho_0\) may be obtained similar to that outlined in Paper I.
We, now, adopt this approach for a pair of flux tubes, whose magnetic configurations are denoted by \(mB_0 \) and \(nB_0 \), and the total background magnetic field \(B_b = mB_0 + nB_0 \). Two pairs of such flux tubes, with pressure distribution derived as follows, are illustrated in Fig. 2. Apart from the magnetic field lines, the plasma-\(\beta \) distribution also clearly indicates two distinct magnetic structures with low plasma-\(\beta \) \(< 1 \) in the lower corona and high plasma-\(\beta \) \(> 1 \) in the photosphere and chromosphere. Note plasma-\(\beta \propto p/B^2 \). To make a determination of the necessary pressure distribution for such an arrangement it is useful to decompose the pressure and density into terms that are purely hydrostatic and independent of the magnetic field and terms that represent corrections to balance the effects of the flux tubes.

Those vertical profiles satisfying the purely hydrostatic background are denoted \(\rho_{bh} \) and \(\rho_{hh} \), and are derived from the observed vertical profiles of Vernazza et al. (1981) and McWhirter et al. (1975) similar, as described in Paper I.

Adjustment to the pressure distribution required to restore equilibrium due to the inclusion of the magnetic configurations \(mB_0 \) and \(nB_0 \) are denoted by \(m\rho_{bm}, n\rho_{bm} \), respectively, and by \(m\rho_{bm} \) for their pairwise interaction. Hence, \(\rho_b = \rho_{bh} + m\rho_{bm} + n\rho_{bm} + m\rho_{bm} \). A corresponding decomposition of the density is also applied, using the same superscripts and subscripts. Eq. (23), thus expanded, may then be arranged to yield

\[
\nabla (\rho_{bh} + m\rho_{bm} + n\rho_{bm} + m\rho_{bm}) = \frac{(mB_0 + nB_0) \cdot \nabla (mB_0 + nB_0)}{\mu_0} = \frac{mB_b + nB_b}{\mu_0} \cdot \nabla \frac{mB_b + nB_b}{\mu_0}.
\]

In this form the curl of the right hand side is not 0 for the self-similar magnetic field, as explained in Appendix A.1. In general there is no valid scalar-field solution to Eq. (25) for \(\rho_b \). It makes physical sense that this should be so. Pairs of magnetic flux tubes in close proximity will be inclined to attract or repel, depending on their relative polarity, so that Eq. (25) is not in equilibrium. Nevertheless, observational evidence exists of multiple flux tubes in relative stability (Dowdy et al. 1986; Solanki 1993; De Pontieu et al. 2003) suggesting the presence of some additional balancing forces. These may reside in local anomalies in the neighbourhood density and pressure distributions, effects from events at some distance or forces acting at or below the footpoints. The nature and source of these forces is complex and beyond the scope of this article, but we conclude that an additional force term is required to satisfy Eq. (25).

We can identify the net force acting in Eq. (25) from the non-vanishing terms within the right hand side of Eq. (24). First, let us eliminate the terms, for which we already have solutions:

\[
\nabla \rho_{bh} = \rho_{bh} g \hat{z} \quad \text{and}
\]

and

\[
\nabla m\rho_{bm} = m\rho_{bm} g \hat{z} - \nabla \frac{mB_b^2}{2\mu_0} + (mB_b \cdot \nabla) \frac{mB_b}{\mu_0}
\]

The terms \(m\rho_{bm} \) and \(m\rho_{bm} \) are derived as in Paper I, taking into account the revised definition of the field in Eq. (22). They are detailed in Equations (A19) and (A20) of Appendix A.2, and equivalently \(n\rho_{bm} \) and \(n\rho_{bm} \).

This leaves only the interaction terms remaining of Eq. (25). Then, having identified the non-vanishing terms in the right hand side of Eq. (24) from amongst these interaction terms,
as detailed in Appendix A.1, we subtract them to obtain
\[
\nabla m_{p_{bm}} = \left(\frac{mB_b \cdot \nabla}{\mu_0} \right) + \left(\frac{mB_b \cdot \nabla}{\mu_0} \right)
\]
\[
- \nabla \left(\frac{mB_b \cdot nB_b}{\mu_0} \right) + m_{p_{bm}} g \hat{z}
\]
\[
- \left(\frac{mB_{b_{0}} \cdot \nabla}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial z}}{\mu_0} \right) \hat{x}
\]
\[
- \left(\frac{mB_{b_{0}} \cdot \nabla}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial z}}{\mu_0} \right) \hat{y}. \quad (26)
\]
where \(\hat{x} \) and \(\hat{y} \) are unit vectors. Eq. (26) may be solved by considering each vector component in turn:
\[
\frac{\partial m_{p_{bm}}}{\partial x} = \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial x}}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial y}}{\mu_0} \quad (27)
\]
and
\[
\frac{\partial m_{p_{bm}}}{\partial y} = \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial y}}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial y}}{\mu_0} \quad (27)
\]
and
\[
\frac{\partial m_{p_{bm}}}{\partial z} = \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{mB_{b_{0}} \cdot \partial B_{b_{0}}}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial z}}{\mu_0} + \frac{nB_{b_{0}} \cdot \frac{\partial mB_{b_{0}}}{\partial z}}{\mu_0} \quad (27)
\]
where \(\hat{z} \) is the unit vector in the z-direction. The solution for \(m_{p_{bm}} \) is specified by Eq. (A21) and \(m_{p_{bm}} \) by Eq. (A22) and detailed in Appendix A.2. We can now specify the background pressure and density profiles in the three-dimensional space as \(p_b = p_{b_{0}} + \frac{m_{p_{bm}} + n_{p_{bm}} + \frac{m_{p_{bm}}}{\rho_{b}} \rho_{b} = \rho_{b_{0}} + \frac{m_{p_{bm}} + n_{p_{bm}} + \frac{m_{p_{bm}}}{\rho_{b}} \rho_{b} \cdot \hat{\beta}}{\rho_{b}} \rho_{b} \cdot \hat{\beta} \) everywhere while the system is being perturbed.

Fig. 3 shows vertical slices of the pressure and temperature for two pairs of flux tubes as well as the resulting plasma-\(\beta \). Two flux tubes exactly co-located on the right form a slightly stronger magnetic structure, while on the left, two identical flux tubes are slightly separated to form a weaker configuration. The delineation into two distinct combinations is most evident in the temperature and plasma-\(\beta \) distributions. The radial symmetry is broken, there is a clear opportunity to investigate interaction between the flux tubes, but they are almost identical.

For more challenging configurations we require more flux tubes with irregular spacing. First, we need to consider the consequences of this configuration for the MHD equations.

2.5. Consequences for the MHD equations

In the preceding Section 2.4 we have derived profiles for the background pressure and plasma density. Suppose, \(p_b \) and \(\rho_b \) are now thus defined for the magnetic flux tube pair \(B_b \) and \(B_b \). If we subtract Eq. (7) from the unperturbed Eq. (2) as presented in Section 2.2 then we obtain
\[
\rho_b \frac{\partial \tilde{a}_i}{\partial t} = \frac{\partial}{\partial x_j} \left(p_b + \frac{B_{b_{0}} B_{b_{0}}}{2 \mu_0} \right) - \frac{\partial}{\partial x_j} \left(\frac{B_{b_{0}} B_{b_{0}}}{\mu_0} \right) - \rho_b g_i
\]
\[
= - \left(\delta_{ij} + \delta_{ik} \right) \left[\frac{B_{b_{0}} B_{b_{0}}}{\mu_0} \frac{\partial B_{b_{0}}}{\partial x_j} \right] + \frac{2 B_{b_{0}} B_{b_{0}}}{\mu_0} \frac{\partial B_{b_{0}}}{\partial x_j} \right], \quad (29)
\]
where \((x_1, x_2, x_3) = (x, y, z)\) and \(\delta_{ij}\) is the Kronecker delta and the latter equality arises from the supplementary terms applying in Eq. (26). That is, the system is out of equilibrium, because the equality of Eq. (7) is no longer valid for the multi flux tube configuration. In this form the advective term from Eq. (10) would also contribute, as \(u_i \neq 0\), for the background state. However, by restoring equilibrium as follows, this term reverts to zero.

\[
\frac{\partial}{\partial x_i} \left(\rho g \right) = \frac{\partial}{\partial x_j} \left(\rho g \right) - \frac{\partial}{\partial x_j} \left(\rho g \right) - F_{\text{bal}} - \rho g \left(\hat{e} \cdot \nabla \right) B.
\]

Fig. 4. — 2D slices along \(y = 0\) of forces applying in Eq. (30) for flux tubes at axes \((x, y) = (1.2, 0), (1.2, 0), (–1.15, 0.15), (–1.25, –0.15)\) Mm of the \(\hat{x}\)-component (a) and \(\hat{y}\)-component (b). Indicative magnetic field lines are overplotted in blue.

The \(x\)-component, Fig. 4 panel (a), and the \(y\)-component, panel (b), of the net forces from Eq. (29) applying along \(y = 0\) for two pairs of flux tubes are illustrated. The pair of flux tubes on the right share an identical axis at \((x, y) = (1.2, 0)\) Mm, so the forces applying between them are zero on \(y = 0\), whereas on the left the flux tube axes are slightly separated with respect to both the \(x\) and \(y\) directions. These forces are most evident in the chromosphere, where the field curvature is strongest. Alternating azimuthal trajectories of the forces with radius and height suggest mutual torsional oscillations would result in the absence of any balancing forces. There are also forces acting between both pairs, but these are negligible near the footpoints, because of the large axial separation, and in the corona, because of the weakness of the tension forces.

This magnetic field, with two flux tubes may be expressed as \(B = B_0 + B + B\). Thus, \(B^2 = |B_0|^2 + |B|^2 + |B|^2 + 2B_0 + 2B + 2B_0 + 2B_0\) with an equivalent pairwise decomposition also applying for the tension force \((B \cdot \nabla) B\). Hence, terms pertaining to interactions between a pair of background flux tubes \(B_0\) and \(B_0\) exclude the perturbations \(B\).

If we extend this to a network of \(N\) magnetic flux tubes with the configuration \(B_0\) as defined by Eq. (22), but free to differ by axial location \((m)\), then the magnetic field can be expressed by the sum

\[
\hat{B} = \sum_{m=1}^{N} \hat{B}_m + \hat{B}_f\]

and the restriction to pairwise interactions between each \(n^{th}\) flux tube, its neighbours and the perturbed magnetic field still applies. The latter equality from Eq. (29) can be generalised for \(N\) flux tubes to

\[
\rho \frac{\partial u_i}{\partial t} = F_{\text{bal}} = -\sum_{m,n=1|m \neq n}^{N} \frac{nB_{mz}}{\mu_0} \frac{\partial mB_{0z}}{\partial z}\]

in which the explicit expression for each \(mn\)-pairing is given in Eq. (A10) of Appendix A.1. To satisfy the equality with \(\rho g\), Eq. (7) must be revised to

\[
\frac{\partial}{\partial x_j} \left(\rho g \right) = \frac{\partial}{\partial x_j} \left(\rho g \right) - \frac{\partial}{\partial x_j} \left(\rho g \right) + F_{\text{bal}} - \rho g \left(\hat{e} \cdot \nabla \right) B.
\]

Scalar multiplication of Eq. (30) with \(u\) then yields

\[
F_{\text{bal}} u = -u_x \sum_{m,n=1|m \neq n}^{N} \frac{nB_{mz}}{\mu_0} \frac{\partial mB_{0z}}{\partial z} u_x - u_y \sum_{m,n=1|m \neq n}^{N} \frac{nB_{mz}}{\mu_0} \frac{\partial mB_{0y}}{\partial z}
\]

and Eq. (8) must also be revised as

\[
u_i \frac{\partial}{\partial x_i} \left(\rho g \right) = \frac{\partial}{\partial x_i} \left(\rho g \right) - \frac{\partial}{\partial x_i} \left(\rho g \right) - f_{\text{bal}} u_i = \rho g u_i.
\]

Now, subtracting Eq. (31) from Eq. (2) and Eq. (33) from Eq. (3) we obtain the revised MHD equations for the perturbed momentum and energy

\[
\frac{\partial}{\partial t} \left(\rho (\hat{e} + \hat{p}) \right) = \hat{e} + \hat{p} \right) + \hat{p}_T
\]

\[
\frac{\partial e}{\partial t} + \frac{\partial}{\partial x_j} \left(\epsilon_{ij} + \hat{e} \right) u_j = \frac{\hat{B}_m}{\mu_0} u_i + \hat{p}_T u_j
\]

\[
\frac{\partial}{\partial x_i} \left(\hat{B}_m B_{ij} + B_{mj} B_{ij} + \hat{B}_m \hat{B}_{ij} \right) + F_{\text{bal}} = \rho g u_i
\]

\[
\frac{\partial}{\partial x_i} \left(\hat{B}_m B_{ij} + B_{mj} \hat{B}_{ij} + \hat{B}_m \hat{B}_{ij} \right) + \rho g u_i
\]

\[
\frac{\partial}{\partial x_j} \left(\hat{B}_m B_{ij} + B_{mj} \hat{B}_{ij} + \hat{B}_m \hat{B}_{ij} \right) + \rho g u_i
\]

\[
\frac{\partial}{\partial x_j} \left(\hat{B}_m B_{ij} + B_{mj} \hat{B}_{ij} + \hat{B}_m \hat{B}_{ij} \right) + \rho g u_i
\]
With the addition of F_{bal} in Eq. (34) the unperturbed system has
\[\frac{\partial p_b}{\partial t} = 0. \]

Note also, this does not affect any terms depending on the perturbations and is independent of changes to the perturbed system, so remains constant over time and the background is in equilibrium.

The corresponding term $F_{\text{bal}} \cdot u$ in Eq. (35) is zero in the steady state, but is apparently subject to amplification by horizontal components of the velocity field. However, an equal and opposite effect is present due to the subtraction of the other terms in Eq. (33), so these combine to result in zero net energy effect.

2.6. Inhomogeneous multiple flux tubes

As outlined in Section 2.5, when adding multiple flux tubes, the background magnetic pressure gradient and tension force are fully specified by the sum of single and pairwise interactions between each flux tube. Thus, given a magnetic field comprising N magnetic flux tubes,
\[B_b = \sum_{m=1}^{N} m B_b, \quad (36) \]
\[p_b = p_{bh} + \sum_{m=1}^{N} m^2 p_{bm} + \sum_{m, n=1}^{N} m n p_{bm}, \quad (37) \]

and
\[\rho_b = \rho_{bh} + \sum_{m=1}^{N} m^2 \rho_{bm} + \sum_{m, n=1}^{N} m n \rho_{bm}, \quad (38) \]
in which $m^2 p_{bm}$ and $m n \rho_{bm}$ represent the action of $m B_b$ on $n B_b$ and vice versa. Hence, the inequality under the summation is required for this quantity to be counted only once for each pair of flux tubes.

The time-independent momentum equation describing the background equilibrium is then
\[\rho_b g \hat{z} - \nabla p_b - \nabla [\frac{1}{2} \mu_0 |B_b|^2] = \frac{(B_b \cdot \nabla) B_b}{\mu_0} + F_{\text{bal}} = 0, \quad (39) \]

where F_{bal} is as specified by Eq. (30). Note, this solution will yield a different equilibrium configuration to the solution of Eq. (23) (Section 2.4), valid for a single flux tube. Consider some single flux tube, with $F_{\text{bal}} \equiv 0$. Let us construct an identical flux tube by combining some field configurations with a common axis of the form $n B_b$, then F_{bal} will be non-zero. Therefore, the solution of Eq. (23) for the single flux tube will obtain different distributions for pressure and density to a solution of Eq. (39) for an identical magnetic field, with the former equilibrium satisfying Eq. (10) and the latter Eq. (34).

We have devised a background magnetic field construction by the summation of multiple locally defined field configurations in magnetohydrostatic equilibrium with the stratified atmosphere, spanning the transition between the solar photosphere and lower solar corona. Let us consider some opportunities presented by this arrangement.

On scales below the minimum observable resolution the fine structure of the magnetic field can add to the complexity and dynamics of a magnetic flux tube. We combine four independent magnetic sources clustered within a photospheric surface element $1'' \times 1'' \approx 725 \text{ km} \times 725 \text{ km}$. This corresponds to the maximum resolution for the magnetic field observations of, for example, the Helioseismic and Magnetic Imager of the Solar Dynamics Observatory (Kosovichev & HMI Science Team 2007). Hence, the fine structure of a magnetic field configuration below this resolution would be treated as a single flux tube, but may well be, and most likely is, the combination of an irregular magnetic field network.

We, thus, construct a non-axisymmetric background magnetic field, that in the corona forms a single identifiable structure, but in the chromosphere has significant complexity. Although the field lines merge in the corona, they retain complexity in the form of pressure, density and plasma-β fluctuations. An example of such an arrangement is illustrated in Fig. 5. Perturbations to this steady background will be subject to non-linear effects in the horizontal direction, due to the irregular field strength, and also in the vertical direction, due to the pressure gradient and the transition from the high to low plasma-β regime.

For the same field configuration a 2D horizontal slice at $z = 0.5 \text{ Mm}$ of the steady background thermal pressure profile is shown in Fig. 7. The deviations in the plasma pressure are small compared to the vertical differential. Overplotted in blue are some magnetic field lines. As might be expected
field lines emanate from the flux tube axes, indicated by the light (low pressure regions). Above the three footpoint axes located at the photosphere in the positive \(x, y \) quadrant the pressure has already merged into a single depression.

By the height of the Transition Region the smaller depression within the flux tube anchored to the photosphere at \((x, y) = (-0.31, -0.34) \) Mm also merges with the other three to form a single, non-uniform low pressure core inside the composite magnetic flux tube. In the plane field lines are not purely radial, with azimuthal trajectories appearing due to the influence of neighbouring flux tubes. Between the axis at \((-0.31, -0.34) \) Mm and the other three axes field lines with opposite polarity appear to meet, and in the regions between the three positive axes there are high concentrations of field lines as they merge with each other. In 3D these lines do not meet due to the vertical component of the field. However magneto-acoustic waves along these converging field lines may interfere with each other near these intersections.

In ideal MHD there is no mechanism for reconnection. For numerical stability, however, simulations require a minimum level of numerical diffusion. Such diffusion will be strongest in regions where the field lines converge resulting in topological changes to the field configuration analogous to magnetic reconnection.

As well as providing interesting structure for a single flux tube as in the preceding example, it is possible to construct networks of flux tubes on larger scales. Fig. 6 illustrates a 3D rendition of the magnetic field resembling a granular lane. This could be extended to form a ring or other network of flux tubes. With sufficiently large numerical domain the horizontal interactions in the corona between flux tubes and networks of flux tubes can be explored. Even in the corona, on this scale the field can exhibit much more anisotropy.
In Fig. 8 we display an environment resembling a solar active region comprising a multitude of magnetic bright points with flux tubes emerging from the photosphere. Although the magnetic field spreads out to fill the corona, the merger is far from uniform and this presents an opportunity to explore the dynamics between, and within, neighbouring flux tubes.

All of these examples are in magnetohydrostatic equilibrium for the stratified solar atmosphere, with positive plasma pressure and density throughout and low plasma-β in the corona, while for $z \lesssim 1$ Mm plasma-$\beta \gg 1$.

Typical footpoint field strength for each flux tube is near 100 mT, but varies depending on the number and proximity of neighbouring flux tubes. Care in the field construction is required, with respect to the vertical and radial expansion factors, footpoint strength and axial proximity. The magnetic field strength should not become so high as to require plasma pressure or density to be negative in order to satisfy the pressure balance.

3. SUMMARY AND DISCUSSION

We have solved analytically the time-independent MHD equation of momentum for a configuration of multiple open magnetic flux tubes in magnetohydrostatic equilibrium embedded within a solar stratified atmosphere, with realistic parameters for plasma pressure, density, temperature and magnetic field strength. The equilibrium is maintained through inclusion of appropriate horizontal balancing forces, which we have also identified and calculated. It may be argued that inclusion even of an appropriate choice of balancing forces undermines the relationship between B, p and ρ, permitting any arbitrary atmosphere to be constructed. This would negate comparison with the real solar atmosphere. However, in our model the atmosphere is also constrained by observational comparison, we restrict the balancing forces to be the minimal requirement to solve the system, and so the atmospheric adjustments remain largely determined by the applied magnetic field.

This is a significant advance in achieving realistic modelling of the magnetized solar atmosphere. The solutions may also have application in other astrophysical environments, such as sunspots or magnetized atmosphere in gas giants. This advances the possibilities for analysis and numerical simulation of systems with background equilibria or quasi-equilibria. In particular, the existence of non-axisymmetric inhomogeneous configurations facilitates research of nonlinear interactions between neighbouring flux tubes. Presence of converging field lines between flux tubes may lead to interesting dynamics.

The model extends from the solar photosphere to the solar corona, incorporating the temperature minimum and the Transition Region. There is some scale-independence to the model, in the sense that it could apply to a single flux tube emerging from a magnetic bright point or to more extended surface areas including flux tube networks in an active solar region. In the smaller scales, such as magnetic bright points, the flux tubes environment is far from force free.

There are two important analytical results. We have identified a sufficient condition to have a force-free steady solution for a magnetic field configuration subject to external vertical gravitation, as specified in Eq. (A6) Appendix A.1

$$\frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial x} \quad \text{and} \quad \frac{\partial B_z}{\partial y} \frac{\partial B_x}{\partial z} = \frac{\partial B_z}{\partial x} \frac{\partial B_y}{\partial z}.$$

This result is consistent with that of Low (1985), applying a general magnetic field of the form

$$B = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \psi \right),$$

where ϕ and ψ are scalar functions. The former condition in Eq. (A6) is immediately satisfied, and the latter is equivalently
specified by
\[\frac{\partial^2 \phi}{\partial x \partial z} \frac{\partial \psi}{\partial y} = \frac{\partial^2 \phi}{\partial y \partial z} \frac{\partial \psi}{\partial x}, \]
for which the general solution is \(\psi(x, y, z) = \Psi(z, \partial \phi/\partial z) \).
This leads to the general solution of Low (1985) for the plasma pressure of the form
\[p + \frac{1}{2\mu_0} \Psi^2 - \frac{1}{\mu_0} \int_0^{\rho_b/\partial z} \Psi(z, u) \, du = p_0(z). \quad (40) \]
\(p_0(z) \) is an arbitrary function (\(\rho_b \) in our model). The term under the integral is typically non-linear without a ready analytic solution. Low (1985) found a particular solution with \(\Psi = \alpha \partial \phi/\partial z \). Summing magnetic structures, as we have done in Section 2.6, Low (1985) constructed a non-axisymmetric multi-nodal configuration.

In our model
\[\phi = \frac{mS}{2B_0} \frac{\partial B_0}{\partial z} mG \quad \text{and} \quad \psi = \frac{mS}{2B_0} \frac{\partial B_0}{\partial z} mG + b_{00} \neq \alpha \partial \phi/\partial z, \quad (41) \]
so that, for the single flux tube, our model yields a new explicit solution to Eq. (40). The general solution of Low (1985) requires Eq. (A6) be satisfied for Eq. (23), i.e. force-free. We have not verified, whether this is a necessary condition, such that failure to satisfy this condition would exclude the possibility of a force-free steady solution. Here, we introduce a new set of explicit solutions, applicable when the latter condition in Eq. (A6) is satisfied for the net magnetic forces acting on Eq. (39). These solutions allow general configurations for the magnetic field. Superpositions of various magnetic field configurations may be combined. Provided the former equality in Eq. (A6) is satisfied for each individual configuration, an analytic solution to Eq. (39) exists for \(p_0 \) and \(\rho_b \), with \(F_{\text{bal}} \) minimally defined by Eq. (30).

Note that the former equality in Eq. (A6) is equivalent to the condition \(J_z = 0 \), the vertical component of background current density and corresponds to an untwisted magnetic field configuration. Our background field is not current free. In the axisymmetric model, applying for the single flux tube, the background current is purely azimuthal. For the multiple flux tubes the background horizontal current includes radial and azimuthal components. Let us stress that this does not exclude \(J_z \) for the perturbed system.

Low (1985) took the approach of identifying the conditions in Eq. (A6) and constructing a magnetic field to satisfy these. His solution was applied to an exponential model back-warding modelling effectively some part of this complex and dynamic system.

For our self-similar flux tube model, we have verified that it is not possible to construct a field of neighbouring flux tubes with a steady solution in the absence of balancing forces. These forces can be identified and calculated, so that the background be in quasi-equilibrium. It would be interesting to investigate whether this approach could be extended to magnetic fields with twist, such that the former condition in Eq. (A6) is not satisfied, but that balancing forces might yet be identified.

An alternative approach could be to extend the analysis of Low (1985) and seek a magnetic field that satisfies completely Eq. (A6) by construction. From the solenoidal condition
\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial}{\partial z} \left(f(z) \frac{\partial \phi}{\partial z} \right) \]
seek a solution with \(f \) and \(\phi \) in a form that may be adapted to match the observed magnetic structures of the solar atmosphere. Finding such a solution is a considerable challenge and there is no guarantee that such configurations should realistically model open flux tubes or loops. Whilst we will consider this approach in future, it is well beyond the current aims: construction of currently observable complex loop structures, with the ultimate goal to investigate wave propagation and wave energy transport/coupling in such complex systems. It is not our intention, here, to model loop or active region dynamics, which involve evolution of the background due to processes, such as reconnection, field relaxation, etc.

In this article we have restricted our examples to systems of open flux tubes of the same polarity. In Appendix A, the derivation is also valid for solutions involving opposite polarity. Indeed, the constants \(mS \) need not be identical, taking any set of real values subject to the constraint that plasma pressure and density remain physical. This could add further curvature for the magnetic field to the non-trivial field curvature that this article describes between flux tubes. A further, though very challenging, improvement would be to include torsional components to the flux tubes, with \(B_\theta \neq 0 \).

Simulations using alternate steady background configurations with single and multiple flux tubes, will help identify the extent to which the interactions between magnetic flux tubes amplify or dampen the transport of energy in the lower solar atmosphere. Also analytical investigation of the various equilibrium conditions could advance our understanding of the structure and forces acting in this solar region.

ACKNOWLEDGEMENTS

FAG is supported by STFC Grant R/131168-11-1. RE is also thankful to the NSF, Hungary (OTKA, Ref. No. K83133) and acknowledges M. Kéray for patient encouragement. The authors would like to acknowledge the NumPy, SciPy (Jones et al. 2001), Matplotlib (Hunter 2007) and MayaVi2 citepramachandran2011 Python projects for providing the computational tools to analyse the data. We also thank Stuart Mumford (python), Stephen Chaffin and Alastair Williamson (useful discussions), and B. C. Low for constructive comment on magnetohydrostatics. We thank the anonymous referee for helpful suggestions to improve the clarity of the manuscript.
Hunter, J. D. 2007, Computing In Science & Engineering, 9, 90
Mariska, J. T. 1993, The Solar Transition Region
Schlüter, A., & Temesváry, S. 1958, in IAU Symposium, Vol. 6, Electromagnetic Phenomena in Cosmical Physics, ed. B. Lehner, 263

APPENDIX

SOLUTION TO BACKGROUND STATIC EQUILIBRUM

Non-vanishing terms in the curl of ∇p

If we consider Eq. (24) for a general magnetic field B subject to gravity acting only along the vertical direction, we require

$$\nabla \times \nabla P = \nabla \times \left(\rho g z + \frac{(B \cdot \nabla) B}{\mu_0} - \nabla \frac{|B|^2}{2\mu_0} \right) = 0. \quad (A1)$$

On the left hand side the pressure is a scalar, so this term vanishes. The magnetic pressure term as a scalar also has vanishing curl, so for the magnetic tension and gravitation we require

$$\frac{\partial}{\partial y} \left(\frac{(B \cdot \nabla) B_z}{\mu_0} + \rho g \right) - \frac{\partial}{\partial z} \left(\frac{(B \cdot \nabla) B_y}{\mu_0} \right) = 0, \quad (A2)$$

$$\frac{\partial}{\partial z} \left(\frac{(B \cdot \nabla) B_x}{\mu_0} \right) - \frac{\partial}{\partial x} \left(\frac{(B \cdot \nabla) B_z}{\mu_0} + \rho g \right) = 0, \quad (A3)$$

$$\frac{\partial}{\partial x} \left(\frac{(B \cdot \nabla) B_y}{\mu_0} \right) - \frac{\partial}{\partial y} \left(\frac{(B \cdot \nabla) B_x}{\mu_0} \right) = 0. \quad (A4)$$

From Eq. (A4) we obtain

$$\frac{\partial}{\partial x} [(B \cdot \nabla) B_y] - \frac{\partial}{\partial y} [(B \cdot \nabla) B_x] = 0 \Rightarrow \left[B \cdot \nabla - \frac{\partial B_x}{\partial z} \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_z}{\partial y} \right) + \frac{\partial B_y}{\partial x} \frac{\partial B_x}{\partial y} - \frac{\partial B_z}{\partial x} \frac{\partial B_y}{\partial z} \right] = 0. \quad (A5)$$

A solution to Eq. (A5) exists if

$$\frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial z} \text{ and } \frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial z}$$

$$(A6)$$

Eq. (A6) is a sufficient condition to satisfy Eq. (A4). Differentiating Eq. (A2) with respect to x and then summing them, we are left only with the z-derivative of Eq. (A5). Again we obtain the relations in Eq. (A6) as a sufficient condition to satisfy fully Eq. (A1). Indeed this may be a necessary condition for a steady magnetic field within a vertical gravity field (Gabriel 1976; Gibson & Low 1998), but we have not verified this.

In the case of the self-similar construction for a single flux tube defined by Eq. (22) both conditions in Eq. (A6) are satisfied. However, for a pair of flux tubes denoted by mB_x and nB_y, where $x_i \neq x_j$ or $y_i \neq y_j$, the latter condition in Eq. (A6) is not satisfied for the cross terms

$$\frac{\partial^m B_x}{\partial y} \frac{\partial^n B_y}{\partial z} \neq \frac{\partial^m B_x}{\partial z} \frac{\partial^n B_y}{\partial y}. \quad (A7)$$
In general configurations of vertical flux tube pairs may include derivative terms for which \(y_i x_j \neq x_i y_j \), failing to satisfy Eq. (A6). We have not identified an alternative construction in which this pairwise interaction can satisfy Eq. (A6). It may be that for an asymmetric field magnetohydrostatic equilibrium cannot exist in the absence of balancing forces, but we have not verified this.

From Eq. (A7) the non-vanishing terms in Eq. (A1) can be identified. A sufficient requirement to equate the right-hand side to 0 will, thus, be to include a balancing force inside the brackets

\[
-\frac{m B_{bz}}{\mu_0} \frac{\partial B_{bx}}{\partial z} \frac{\partial B_{bx}}{\partial z} \bar{x} - \frac{n B_{bx}}{\mu_0} \frac{\partial B_{bx}}{\partial z} \frac{\partial B_{by}}{\partial z} \bar{y} = \frac{m B_{bx}}{\mu_0} \frac{\partial B_{by}}{\partial z} \frac{\partial B_{by}}{\partial z} \bar{y}.
\]

(A8)

It follows that it is sufficient to modify the interaction terms in Eq. (25) to

\[
\nabla \cdot \left(\frac{m B_{bx}}{\mu_0} \frac{\partial B_{bx}}{\partial z} \frac{\partial B_{bx}}{\partial z} \bar{x} + \frac{n B_{bx}}{\mu_0} \frac{\partial B_{bx}}{\partial z} \frac{\partial B_{by}}{\partial z} \bar{y} \right) + m B_{az} \frac{\partial B_{bx}}{\partial z} \frac{\partial B_{bx}}{\partial z} \bar{x} + m B_{az} \frac{\partial B_{by}}{\partial z} \frac{\partial B_{by}}{\partial z} \bar{y} = m n p_{bmx} \gamma _{b} \bar{z} = 0.
\]

(A9)

In this form we can now follow Appendix A.2 to solve for \(\rho \) and \(\rho \). With plasma pressure and density thus modified, the equality in Eq. (23) for the pressure balance is no longer valid. This will be restored by adding to the right hand side the sum of forces \(m F \) matching the net force applying on \(x^* B_z \) due to \(m B_z \). Explicitly

\[
m F = -\frac{m B_{bz}}{\mu_0} \frac{\partial B_{bx}}{\partial z} \frac{\partial B_{bx}}{\partial z} \bar{x} - \frac{m B_{bz}}{\mu_0} \frac{\partial B_{by}}{\partial z} \frac{\partial B_{by}}{\partial z} \bar{y} \tag{A10}
\]

Plasma pressure and density adjustment

Basic quantities and derivatives

Listed here are the various derivatives from the expressions for a single flux tube, which will be required in the calculations.

\[
\frac{\partial m f}{\partial x} = \frac{(x - m x) B_{b0}}{m f} \tag{A11}
\]

\[
\frac{\partial m f}{\partial y} = \frac{(y - m y) B_{b0}}{m f} \tag{A12}
\]

\[
\frac{\partial m G}{\partial x} = -\frac{2(y - m y) B_{b0}}{f_0} \tag{A13}
\]

\[
\frac{\partial m G}{\partial y} = -\frac{2(x - m x) B_{b0}}{f_0} \tag{A14}
\]

We will require the derivatives in these expressions as follows:

\[
\frac{\partial m B_{bx}}{\partial x} = m S \frac{2(x - m x) B_{b0}}{f_0} \tag{A15}
\]

\[
\frac{\partial m B_{by}}{\partial y} = m S \frac{2(y - m y) B_{b0}}{f_0} \tag{A16}
\]

\[
\frac{\partial m B_{bz}}{\partial z} = m S \frac{2(x - m x) B_{b0}}{f_0} \tag{A17}
\]

\[
\frac{\partial m B_{b0}}{\partial x} = m S \frac{2(x - m x) B_{b0}}{f_0} \tag{A18}
\]
Balancing plasma pressure and density for single flux tube

Each single flux tube in isolation as described by Eq. (22) has axial symmetry. For convenience we retrace the solution in cylindrical coordinates as described in Paper I, but here applying a constant vertical ambient background field. We also include the constant $m_S = ±1$, allowing alternative polarity to be considered for each flux tube.

\[
\frac{\partial m_{p\text{m}}}{\partial r} = \frac{\partial}{\partial r} \left(\frac{m_{B_0}^2}{\mu_0} \right) + \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial r} + \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial z} \\
= -\frac{\partial}{\partial r} \left(\frac{m_{B_0}^2}{\mu_0} \right) + \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial r} + \frac{2 m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} - \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} - \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} \\
= -\frac{\partial}{\partial r} \left(\frac{m_{B_0}^2}{\mu_0} \right) + \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial r} + \frac{2 m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} - \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} - \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z}.
\]

Integrating with respect to r we obtain a solution for $m_{p\text{m}}$ as

\[
m_{p\text{m}} = \frac{-m_{B_0}^2}{2\mu_0} - \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial z} \left(\frac{m_0^2 + f_0^2}{2} \right) \frac{\partial m_{B_0}}{\partial z} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{4\mu_0} \frac{\partial m_{B_0}}{\partial z} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{2\mu_0} \frac{\partial m_{B_0}}{\partial z}.
\]

This must be matched by the solution obtained by solving the z-component of the pressure balance equation so

\[
m_{p\text{m}} = \frac{m_{p\text{m}} g dz}{2\mu_0} - \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial z} \left(\frac{m_0^2 + f_0^2}{2} \right) \frac{\partial m_{B_0}}{\partial z} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{4\mu_0} \frac{\partial m_{B_0}}{\partial z} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{2\mu_0} \frac{\partial m_{B_0}}{\partial z}.
\]

\[
m_{p\text{m}} g = \frac{\partial}{\partial z} \left(\frac{m_{S_0} m_{B_0}^2 m_0^2 m_0^2}{2\mu_0} \frac{\partial m_{B_0}}{\partial z} \right) - \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial r} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z}.
\]

\[
m_{p\text{m}} = \frac{m_{S_0} m_{B_0}^2 m_0^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} - \frac{m_{B_0} m_{B_0}}{\mu_0} \frac{\partial m_{B_0}}{\partial r} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z} + \frac{m_{B_0} m_{B_0}^2 m_0^2}{\mu_0} \frac{\partial m_{B_0}}{\partial z}.
\]

(A20)

The distribution for the plasma density can therefore be obtained by dividing Eq. (A20) by g. For our example we apply a constant g for simplicity due to the small variation over the vertical domain of our model, but the solution is equally valid with variable gravity $g = g(z)$. However, it is not suitable for including self-gravity due to the horizontal fluctuations in the plasma density. This would arguably be very small in comparison to the global solar gravity for the scales we are considering.

Plasma pressure and density from pairwise interactions

We require $m_{p\text{m}}$, the pressure deviation in response to the force exerted by flux tube configuration m_{B_0} on m_{B_0} and vice versa. Taking advantage of the equality in Eq. (A12) the y-derivatives in Eq. (27) can be transposed and the tension terms cancel
directly to yield
\[
\frac{\partial m_{\text{pmn}}}{\partial x} = -\frac{\partial}{\partial x} \left(\frac{mB_b \cdot nB_b}{\mu_0} \right) + \frac{mB_{bz}}{\mu_0} \frac{\partial nB_{bz}}{\partial x} + \frac{nB_{bz}}{\mu_0} \frac{\partial mB_{bz}}{\partial x} + \frac{mB_{by}}{\mu_0} \frac{\partial nB_{by}}{\partial x} + \frac{nB_{by}}{\mu_0} \frac{\partial mB_{by}}{\partial x}.
\]

Integrating with respect to \(x\) we, thus, obtain
\[
m_{\text{pmn}} = -\frac{mB_{bz} \cdot nB_{bz}}{\mu_0}
\]
plus an arbitrary function constant in \(x\). Solving Eq. (27) for the \(y\)-component recovers the identical solution, so any additional terms can have only \(z\)-dependence and are fully accounted for within the hydrostatic background terms \(p_{bh}\) and \(\rho_{bh}\). The solution to Eq. (28) must also match so
\[
m_{\text{pmn}} = \int m_{\text{pmn}} \, dy + \left(\frac{mB_b \cdot \nabla}{\mu_0} \right) \frac{nB_{bz}}{\mu_0} + \left(\frac{mB_{by} \cdot \nabla}{\mu_0} \right) \frac{mB_{bz}}{\mu_0} \, dz = -\frac{mB_{bz} \cdot nB_{bz}}{\mu_0}
\]
\[
\Rightarrow m_{\text{pmn}} = \frac{\partial}{\partial z} \left(\frac{mB_{bz} \cdot nB_{bz}}{\mu_0} \right) + \frac{\partial}{\partial z} \left(\frac{mB_{by} \cdot nB_{by}}{\mu_0} \right) - \left(\frac{mB_b \cdot \nabla}{\mu_0} \right) \frac{nB_{bz}}{\mu_0} + \left(\frac{mB_b \cdot \nabla}{\mu_0} \right) \frac{nB_{by}}{\mu_0}
\]
\[
+ \frac{\partial}{\partial z} \left(mS^2S(x - m_x)(x - n_x)B_{0z} mG^G \left(\frac{\partial B_{0x}}{\partial z} \right)^2 + 2 mS^2S(x - m_x)(x - n_x)B_{0z} mG^G \left(\frac{\partial B_{0x}}{\partial z} \right)^2 \right)
\]
\[
- 2 mS^2S(x - m_x)(x - n_x)B_{0z} mG^G \left(\frac{\partial B_{0y}}{\partial z} \right)^2 - 2 mS^2S(x - m_x)(x - n_x)B_{0z} \frac{n^2}{f_0^2} mG^G \left(\frac{\partial B_{0z}}{\partial z} \right)^3
\]
\[
+ 2 mS^2S(y - m_y)(y - n_y)B_{0z} mG^G \left(\frac{\partial B_{0y}}{\partial z} \right)^3 + 2 mS^2S(y - m_y)(y - n_y)B_{0z} mG^G \left(\frac{\partial B_{0z}}{\partial z} \right)^3
\]
\[
m_{\text{pmn}} = \frac{2}{\mu_0 g} mS^2S(x - m_x)(x - n_x)B_{0z} mG^G \left(\frac{f_0^2 - m^2 - n^2}{f_0^2} \right) \left(\frac{\partial B_{0z}}{\partial z} \right)^3 + \frac{2}{\mu_0 g} mS^2S(y - m_y)(y - n_y)B_{0z} mG^G \left(\frac{f_0^2 - m^2 - n^2}{f_0^2} \right) \left(\frac{\partial B_{0z}}{\partial z} \right)^3
\]
\[
+ \frac{2}{\mu_0 g} mS^2S B_{0z} mG^G \left(\frac{\partial B_{0z}}{\partial z} \right)^3 \left(\frac{B_{0z}^2 (m_x - m_y)^2 + B_{0z}^2 (n_y - n_x)^2}{f_0^2} - 2 \right)
\]
\[
+ \frac{2}{\mu_0 g} \frac{\partial B_{0z}}{\partial z} \left(-2 mS^2S mG^G \left(\frac{f_0^2}{f_0^2} \right) + \frac{mS^2S mG^G}{f_0^2} - mG^G \right).
\]